Khi mới thực hiện tự động hoá trạm biến áp, các kĩ sư sẽ gặp nhiều khó khăn trong việc phối hợp thiết bị của các hãng khác nhau theo tiêu chuẩn iec-61850. Mặc dù các hãng đều cung cấp mô hình đối tượng và dịch vụ theo iec61850 nhưng các kĩ sư vẫn phải quyết định cấu hình cho từng trạm cụ thể. Vì thế các kĩ sư trạm biến áp cần hiểu sâu tiêu chuẩn iec-61850, tính năng thu được từ tiêu chuẩn, giải quyết các vấn đề khi yêu cầu tự động hoá trạm.
Khi chúng ta xem xét sơ đồ bảo vệ hệ thống điện, cách nhanh nhất là xem bắt đầu từ sơ đồ bảo vệ thanh cái, vì đó là sơ đồ dễ nhất. Người ta thường sử dụng các rơ le bảo vệ quá dòng (Hình 1). Rơle bảo vệ quá dòng là thiết bị điện từ trường trong đó dòng điện chạy quacuộn dây xung quanh một lõi kim loại tạo ra từ trường. Khi dòng điện đủ lớn, từ trường hút nắp kim loại, làm đóng công tắc mạch.
Hình 1 - Bảo vệ quá dòng.
Trên sơ đồ có hai thiết bị. Một là biến dòng hướng (direction CT). Nếu dòng I1P chảy từ sơ cấp đến mốc đánh dấu trên cuộn sơ cấp, thì dòng đầu ra I1S sẽ xuất hiện trên biến dòng tại điểm đánh dấu thứ cấp.
Bài viết này hướng dẫn cách sử dụng rơ le SIPROTEC 4 bảo vệ máy biến áp . Chúng ta sẽ đề cập sơ đồ ứng dụng của máy biến áp và cách bảo vệ phổ biến nhất:
Chạm đất bên thứ cấp được phát hiện sử dụng rơ le bảo vệ quá dòng 51N. Tuy nhiên nó phải được đặt thời gian theo rơ le bảo vệ dòng cấp.
Rơle bảo vệ chạm đất 87N có thể sử dụng thêm để ngắt nhanh chạm mát trong cuộn dây máy biến áp. Rơle 7VH60 là rơ le so lệch trở kháng cao và phải sử dụng thêm các biến dòng.
Máy cắt và rơ le bên sơ cấp có thể thay thế bằng cầu chì.
Polyethylene và vỏ PVC. Cáp lưới chống nhiễu mạ bạc khả năng chống nhiễu cao 90dB, đáp ứng tần số tới12,4 Ghz và sử dụng với connector SMA, TNC, Type N & BNC.
Tính năng / Lợi ích:
Trọng lượng nhẹ
Rất mềm
Chống nhiễu cao 90 dB
Đầu nối thép không gỉ
Dùng cho
• Thay thế cáp RG-8/9913 Air-Dielectric type Cable
• Jumper Assemblies in Wireless Communications Systems
• Short Antenna Feeder runs
• Các ứng dụng dân sự và quân sự (e.g. WLL, GPS, LMR, WLAN, WISP, WiMax, SCADA, Mobile Antennas) , low loss RF cable
DuPont Specialty Products, công ty con thuộc DuPont de Nemours, Inc. và Nippon Paper Papylia, công ty con thuộc Nippon Paper đã ký thoả thuận thành lập Công ty "DuPont Nippon Paper Papylia Godo Kaisha" (DPNP) sản xuất giấy cách điện Nomex tại nhà máy Yufutsu, Hokkaido, Nhật Bản. Nhà máy mới này sẽ đi vào hoạt động từ năm 2021.
Giấy Nomex được sử dụng trong nhiều ứng dụng yêu cầu cao, quan trọng. Khả năng cách điện, chống cháy, kháng hoá chất và độ bền cơ học cao giúp Nomex là vật liệu lý tưởng cách điện. Giấy Nomex cách điện cho hệ thống lưu trữ năng lượng, máy biến áp, động cơ khởi động điện ô tô xEV, trạm xạc điện... Máy bay thương mại dùng vật liệu honeycomb sản xuất từ Nomex để bảo vệ cách nhiệt bên trong và bên ngoài.
Việc thành lập DPNP nhằm đáp ứng do nhu cầu giấy Nomex ngày càng tăng trong lĩnh vực hàng không, ôtô và điện lực.
Tính năng và lợi ích
Khớp nối ren đảm bảo kết nối tại những điểm hay có rung động tiếp xúc.
Chuẩn chung nhiều hãng thiết bị như NSN Flexi, NEC Pasolink V4, Pasolink Neo ..
Hoạt động tốt cho tần số 0-11 GHz.
Applications
• Antennas • Base Stations • Cable Assembly • Cellular • Components • Instrumentation • Mil-Aero • Networks • Radar • Telecom
Đo điện dung và hệ số tổn hao (dissipation factor) là bài kiếm tra bảo trì điện áp thấp xoay chiếu giống với đo kiểm tra hệ số công suất.
Bài đo này giống như tên gọi của nó nhằm xác định điện dung và hệ số tổn hao của hệ thống cách điện máy biến áp. Bài đo này được thực hiện khi nghiệm thu nhắm xác định cơ sở so sánh các phép đo trong tương lai.
Việc chuẩn bị máy biến áp giống như quy trình đo hệ số công suất, nhưng không yêu cầu thay đổi kết nối khi phép đo được thiết lập. Kết nối đến đầu điện áp cao và điện áp thấp được thay đổi trên chuyển mạch đi kèm thiết bị đo.
Điện dung và hệ số tổn hao được đo bằng cách cân bằng đồ hồ cho mỗi giá trị khi thay đổi vị trí biến đo.
Tự động hóa trạm biến áp là nhiệm vụ quan trọng và các công ty điện lực phải thực hiện đồng bộ thiết bị đóng cắt tại trạm biến áp trên lưới điện phân phối để cho phép truyền tải điện nhịp nhàng và duy trì tính toàn vẹn lưới điện. Đồng bộ tín hiệu thời gian chính xác đảm bảo thiết bị có tín hiệu thời gian chính xác cho điều khiển hệ thống và thu thập dữ liệu. Đồng bộ hóa thời gian đặc biệt quan trọng cho việc lấy mẫu giá trị dòng điện, điện áp (IEC61850-9-2) yêu cầu tín hiệu thời gian chính xác trong thiết bị trộn tín hiệu.
Đồng bộ hóa thời gian dùng hiệu chính tín hiệu đồng hồ bên trong thiết bị điện thông minh (IED), bộ trộn tín hiệu (merge units - MU ), thiết bị chuyển mạch Ethernet... trong trạm biến áp tự động hóa. Việc này giúp điều khiển chính xác và phân tích sự cố toàn cầu cho phép xác định sự cố xảy ra khi nào, ở đâu và đưa ra phương án xử lý.
Trong trạm biến áp tự động hóa, các ứng dụng sau đây yêu cầu đồng bộ hóa thời gian:
Giao thức truyền dữ liệu Ethernet như GOOSE và MMS.
Thu thập dữ liệu theo thời gian thực từ IED, RTU và MU.
Kiểm soát vận hành thời gian thực của thiết bị như rơ le bảo vệ.
Ghi nhận sự cố để phát hiện và phân tích sự cố.
Có hai kiểu đồng bộ thời gian trong trạm trạm biến áp tự động hóa: đồng bộ thời gian trực tiếp và đồng bộ qua mạng LAN.
EVN đã tiến hànhthử nghiệm và lắp đặt hệ thống giám sát trạm biến áp sử dụng modem Cellular IP của hãng Four-Faith dùng kết nối di động đến thiết bị tại trạm, cải thiện hoạt động ổn định của thiết bị đầu cuối và thiết bị điện, nhằm nâng cao chất lượng hệ thống.
Dự án sử dụng modem Cellular IP Four-Faith F2103 GPRS IP Modem cho truyền dẫn dữ liệu. Thiết bị F2103 nhận nhận dữ liệu giám sát từ thiết bị trạmgửi đến trung tâm giám sát qua mạng di động 2G/3G, trong khi đó trung tâm giám sát thực hiện các lệnh điều khiển cho nút giám sát thông qua mạng thiết bị thông tin hai chiều cho chức năng telemetry, điều khiển từ xa.
SMA là viết tắt của subminiature A được phát triểntừ những năm 1960.Đầu nối sử dụng cho giao diện luồng, trở kháng 50 Ω cho dải tần lên đến18 GHz. Đầu nối hiệu suất cao có kích thước nhỏ gọn và độ bền vượt trội.
Chuyển mạch Bảo vệ Vòng Ethernet (Ethernet Ring Protection Switching - ERPS) là giao thức được đưa ra của Liên minh Viễn thông Quốc tế ITU-T dành cho kết nối chuyển mạch với vòng dự phòng tại lớp 2, tiêu chuẩn ITU-T G.8032. Liên kết Bảo vệ Vòng dùng cho kết nối dự phòng và nâng cao độ tin cậy của mạng. Tuy nhiên việc sử dụng liên kết bảo vệ vòng sẽ gây ra hiện tượng phát đồng loạt các gói tin và làm bảng MAC không ổn định. Việc này tác động đến hệ thống mạng, chất lượng kết nối và liên kết bị gián đoạn.
Đồng hồ đồng bộ thời gian GPS chạy độc lập hoặc phối hợp cùng tối đa 02 máy chủ thời gian NTP khác (phiên bản công nghiệp) hoặc 07 máy chủ thời gian NTP (phiên bản Datacenter).
Tín hiệu đầu ra:
IRIG-B (analogue / digital) và ASCII (RS232C)
DCF77
Giám sát tập trung (tuỳ chọn) hoặc giám sát từng máy chủ thời gian (tuỳ chọn).
Mục đích chính của việc bảo dưỡng máy biến áp là đảm bảo các bộ phận bên trong, bên ngoài và phụ kiện máy biến áp ở tình trạng tốt, đúng chức năng, và vận hành an toàn. Mục đích thứ hai không kém phần quan trọng là lưu lại hồ sơ về tình trạng của máy biến áp.
Máy biến áp có thể được bảo dưỡng định kỳ hoặc theo điều kiện về tình trạng máy. Cách thứ hai là cách tiết kiệm nhất chi phí bảo dưỡng. Yêu cầu bảo dưỡng được đưa ra dựa trên một hoặc kết hợp các điều kiện sau: kiểm tra, phân tích mẫu dầu, đo kiểm thông số điện, thiết bị đo kiểm, kiểm tra nhiệt độ bằng camera camera, theo dõi thông số online / offline với lưới điện thông minh...
Cấp điện áp trung thếxác định theo tiêu chuẩn ANSI C84 là điện áp từ 2400 đến 69 kV, và mức điện áp cao thế là từ 115 kV đến 230 kV.
Thật ra chính xác theo ANSI C84 thì điện áp trung thế là lớn hơn 1000 V và nhỏ hơn 100.000 V. Điện áp cao thế lớn hơn 100.000 V đến 230.000 V.
Tiêu chuẩn cầu chì cao thế dùng cho cả cầu chì trung thế và cầu chì cao thế. Tuy nhiên, trọng tâm của bài viết này sẽ tập trung vào cầu chì trung thế đến38 kV.
Các tiêu chuẩn sau đây áp dụng cho cầu chì trung thế:
Nói chung, cầu chì trung thế có thể được chia thành hai loại chính: cầu chì giới hạn dòng (Current-limiting) và cầu chì trục xuất (expulsion).
Cầu chì giới hạn dòng (Current-limiting fuse ) là cầu chì tự ngắt khi dòng khi vượt quá mức ngưỡng, thời gian hồi phục điện áp bằng hoặc nhỏ hơn thời gian vòng lặp đồng bộ hoặc chu kỳ đầu, dòng thoát sét nhỏ hơn dòng thoát sét của cầu chì dùng lõi đặc với điện trở tương đươn. Định nghĩa này được áp dụng cho cầu chì trung thế.
Dạng cầu chì hơi trục xuất khí gas tạo ra do hiệu ứng hồ quang trong nó, hoạt động độc lập hoặc có cơ chế cơ khí hỗ trợ, gây ngắt dòng.
Phân loại theo tiêu chuẩnANSI C37.42-1996 với khả năng chịu cách điện tại các mức công suất khác nhau, áp dụng cho trạm biến áp chính và trạm biến áp phụ, với vỏ ngoài kiên cố lắp đặt trong trạm biến áp.
Được xác định theo tiêu chuẩn ANSI C37.42-1996 có khả năng chịu cách điện mức điện áp phân phối, dùng cho mạch phân phối.
Cầu chì phân phối lại được chia thành loại cầu chì giới hạn dòng phân phối ( distribution current limiting fuses) và cầu chì tự rơi (distribution fuse cutouts).
Cầu chì giới hạn dòng phân phối ngắt dòng điện ngắt dòng điện trong khoảng thời gian ngắn hơn một chu kỳ khi dòng vượt quá mức giới hạn. Đây là ưu điểm của cầu chì vì giới hạn dòng điện không quá mức dòng giới hạn ghi trên thiết bị hạ thế. Cầu chì giới hạn dòng với khả năng bảo vệ cao cho phép bảo vệ thiết bị khi ngắt mạch.
Cầu chì có khả năng ngắt dòng từ mức giới hạn dòng tối đa đến mức giới hạn dòng định danh tối thiểu.
Cầu chì ngắt dòng điện từ mức ngắt dòng định danh đến mức dòng gây nóng chảy thành phần cầu chì trong thời gian dưới 1 giờ.
Cầu chì ngắt dòng từ mức dòng định danh đến mức dòng liên tục tối thiểu gây nóng chảy cầu chì.
Do giới hạn của backup và general purpose current limiting fuses, cầu chì giới hạn dòng lại được phân thành loại E hoặc R, như sau:
Cầu chì ở mức 100A hoặc thấp hơn sẽ nóng chảy trong vòng 300 tại mức dòng hiệu dụng từ 200% đến 240% dòng định danh liên tục của cầu chì. Cầu chì dòng định danh trên 100A sẽ nóng chảy trong 600 giây khi dòng hiệu dụng (RMS) trong phạm vi 220% đến 264% dòng định danh liên tục của cầu chì.
Cầu chì nóng chảy từ 15 đến 35 giây tại giá trị dòng điện bằng 100 lần số điện trở (R number). Tương tự như vậy, cầu chì giới hạn dòng phân phối được phân loại theo đặc tính, gọi là C rating như sau:
Cầu chì sẽ nóng chảy trong vòng 100 giây tại dòng hiệu dụng trongphạm vi 170% đến 240% dòng liên tục định dang của cầu chì. Biểu đồ thời gian - dòng điện điển hình cho E-rating thể hiện trong hình 1.
Cầu chì hình 1 là cầu chỉ 125 E-rating. Chú ý đoạn dòng xấp xỉ 250 A trong khoảng thời gian nóng chảy 1000 s.
Hình 1 – Đặc tính thời gian - dòng điện của cầu chì công suất giới hạn dòng E-Rating điển hình.
Cầu chì công suất giới hạn dòng bao gồm đế lắp và cầu chì. Thiết bị thường đặt trong tủ điện vỏ kim loại. Cầu chì giới hạn dòng phân phối gồm thanh giữ hoặc nhíp ngắt mạch, cầu chì. Cầu chì giới hạn dòng phân phối có thể đi kèm đế lắp trong dầu, để sử dụng với máy biến áp phân phối.
Cầu chì thường được sử dụng bảo vệ tụ, dùng các nhíp để gắn tụ.
Hình 2 – Cầu chì công suất giới hạn dòng và đế lắp
Cầu chì công suất giới hạn dòng thường được sử dụng để bảo vệ ngắn mạch cho máy biến áp đo lường, máy biến áp công suất và tủ tụ điện. Bảng 1 dùng lựa chọn điện áp định dang tối đa cầu chì công suất giới hạn dòng từ 2,75 đến 38 kV.
Bảng 1 – Điện áp định dang tối đa cho cầu chì công suất giới hạn dòng 2.75 – 38 kV
Điện áp định danhtối đa (kV) |
Dòng định danh liên tục tối đa (A) | Định danh ngắt tối đa ngắn mạch (kA RMS symmetrical) |
2.75 | 225,450a,750a, 1350a | 50.0, 50,0, 40.0, 40.0 |
2.75/4.76 | 450a | 50.0 |
5.5 | 225,400,750a,1350a | 50.0, 62.5, 40.0, 40.0 |
8.25 | 125,200a | 50.0, 50.0 |
15.5 | 65,100,125a,200a | 85.0, 50.0, 85.0, 50.0 |
25.8 | 50,100a | 35.0, 35.0 |
38.0 | 35.0, 35.0 |
Khi ngắt mạch cầu chì giới hạn dòng sẽ thay đổi điện thế đáng kể. Yếu tố này cần xem xét khi lựa chọn thiết bị. Người ra thường sử dụng mứcBIL. Mức quá điện áp tối đa cho phép đối với cầu chì giới hạn dòng thể hiện trong bảng 2 dưới đây:
Bảng 2 - Mức quá áp tối đa cho phép với cầu chì công suất giới hạn dòng
Điện áp tối đa định danh (kV) | Xung quá áp tối đa (Maximum Peak Overvoltages) (kV, crest) | |
0.5A đến 12A | trên 12A | |
2.8 | 13 | 9 |
5.5 | 25 | 18 |
8.3 | 38 | 26 |
15.0 | 68 | 47 |
15.5 | 70 | 49 |
22.0 | 117 | 70 |
25.8 | 117 | 81 |
27.0 | 123 | 84 |
38.0 | 173 | 119 |
John McDonald - IEEE
Một trong những định nghĩa phổ biến nhất của lưới điện thông minh là kết hợp hoạt động điều hành và cơ sở hạ tầng công nghệ thông tin công ty năng lượng tạo ra lưới điện thông minh, hiệu quảvà đáng tin cậy. Công nghệ tự động hóa trạm biến áp và trạm trung chuyểnđóng vai trò quan trọng trong việc đưa hoạt động và IT với nhau để tạo ra lưới điệnthông minh hơn, nhưng các công ty năng lượng phải triển khai các công nghệ hiệu quả để thực hiện đầy đủ những lợi ích này.
Mục đích của bài viết này là để mô tả những lợi ích tự động hóa trạm biến áp và trạm trung chuyểncho lưới điện thông minh và nhấn mạnhcác yếu tố cần lưu ý.
Máy tính điều khiển và giám sát HMI Micom C264 thiết kế dạng modun kiểm soát đầu vào / đầu ra, kết nối thông tin, đo lường và tự động hóa trạm biến áp. Thiết bị là thành phần không thiếu được trong lưới điện thông minh.
Từ ngày 6-8/10/2022, JETRO sẽ tổ chức "Hội nghị kinh doanh triển lãm mua sắm linh kiện" trong khuôn khổ triển lãm "Công nghiệp Hỗ trợ 2022" tại Trung tâm Hội nghị và Triển lãm Sài gòn, 779 Nguyễn Văn Linh, Quận 7, TP Hồ Chí Minh.
Tủ nguồn giao thông UPS nạp và theo dõi ắc quy ngoài 12V sau đó phát điện áp ra 24 hoặc 48 V. Thiết bị có hai nguồn cấp khi nguồn cấp từ điện lưới và ắc quy khi mất điện sẽ tự đông chuyển nguồnphát điện từ ắc quy. Bộ cảm biến cảnh báo nhiệt độ bên ngoài sẽ báo ngừng nạp khi nhiệt độ ắc quy cao, giúp bảo vệ và kéo dài tuổi thọ ắc quy. Trạng thái hoạt động của thiết bị và ắc quy được thể hiện bằng đèn cảnh bảo LED giúp việc bảo dưỡng dễ dàng. Thiết bị thiết kế có nhiệt độ làm việc 80 độ C, ngoài trời dành cho môi trường khắc nghiệt.